Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a model for atmospheric absorption of solar ultraviolet (UV) radiation. The initial motivation for this work is to predict this effect and correct it in Sounding Rocket (SR) experiments. In particular, the Full-sun Ultraviolet Rocket Spectrograph (FURST) is anticipated to launch in mid-2023. FURST has the potential to observe UV absorption while imaging solar spectra between 120-181 nm, at a resolution of ℛ > 2 ⋅ 10 4 ( Δ V < ± 15 km / s ) , and at altitudes of between ≈ 110-255 km. This model uses estimates for density and temperature, as well as laboratory measurements of the absorption cross-section, to predict the UV absorption of solar radiation at high altitudes. Refraction correction is discussed and partially implemented but is negligible for the results presented. Absorption by molecular Oxygen is the primary driver within the UV spectral range of our interest. The model is built with a wide range of applications in mind. The primary result is a method for inversion of the absorption cross-section from images obtained during an instrument flight, even if atmospheric observations were not initially intended. The potential to obtain measurements of atmospheric properties is an exciting prospect, especially since sounding rockets are the only method currently available for probing this altitude in-situ . Simulation of noisy spectral images along the FURST flight profile is performed using data from the High-Resolution Telescope and Spectrograph (HRTS) SR and the FISM2 model for comparison. Analysis of these simulated signals allows us to capture the Signal-to-Noise Ratio (SNR) of FURST and the capability to measure atmospheric absorption properties as a function of altitude. Based on the prevalence of distinct spectral features, our calculations demonstrate that atmospheric absorption may be used to perform wavelength calibration from in-flight data.more » « less
-
Falling particle curtains are important in many engineering applications, including receivers for concentrating solar power (CSP) facilities. During the formation of such a curtain, we observe a multiphase analog of Rayleigh-Taylor instability. It was originally described in 2011 for a situation when air sparsely seeded with glycol droplets was placed above a volume of unseeded air, producing an unstably stratified average density distribution that was characterized by an effective Atwood number 0.03. In that case, the evolution of the instability was indistinguishable from single-phase Rayleigh-Taylor instability with the same Atwood number, as the presence of the droplets largely acted as an additional contribution to the mean density of the gaseous medium. Here we present experiments where the volume (and mass) fraction of the seeding particles in gas is considerably higher, and the gravity-driven flow is dominated by the particle movement. In this case, the evolution of the observed instability appears significantly different.more » « less
-
A collaborative effort between University of Washington, Shared Spectrum Company and Daintree Technologies is resulting in the first metro-scale spectrum observatory – CityScape. In this work, we provide an overview of the system architecture (both hardware and software components), the novel features that distinguish this from others and the design and operational challenges encountered.more » « less
An official website of the United States government

Full Text Available